Chlorobenzene degradation by electro-heterogeneous catalysis in aqueous solution: intermediates and reaction mechanism.

نویسندگان

  • Jiade Wang
  • Yu Mei
  • Chenliang Liu
  • Jianmeng Chen
چکیده

This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis. The effects of current density, pH, and electrolyte concentration on CB degradation were determined. The degradation efficiency of CB was almost 100% with an initial CB concentration of 50 mg/L, current density 15 mA/cm2, initial pH 10, electrolyte concentration 0.1 mol/L, and temperature 25 degrees C after 90 min of reaction. Under the same conditions, the degradation efficiency of CB was only 51% by electrochemical (EC) process, which showed that electro-heterogeneous catalysis was more efficient than EC alone. The analysis results of Purge-and-Trap chromatography-mass spectrometry (P&T/GC/MS) and ion chromatography (IC) indicated that in the reaction process, the initial *OH attack could occur at the C-Cl bond of CB, yielding phenol and biphenyl with the release of Cl-. Further oxidation of phenol and biphenyl produced p-Vinylbenzoic acid and hydroquinol. Finally, the compounds were oxidized to butenedioic acid and other small-molecule acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing activated carbon and magnetic activated carbon in removal of linear alkylbenzene sulfonate from aqueous solution by heterogeneous catalytic ozonation process

Activated carbon from pine cone (PCAC) was used as a precursor to prepare Fe3O4/magnetic activated carbon (MPCAC). Here, the removal of linear alkylbenzene sulfonate (LAS) was studied using catalytic ozonation process (COP) in exposure to MPCAC. Subsequently, it was compared with PCAC. Moreover, the effects of solution's initial pH, catalyst dosage, and the time of ozonati...

متن کامل

Degradation of High-Concentration of Perchloroethylene from Aqueous Solution Using Electro-Fenton Process

Introduction: Perchloroethylene (PCE) is one of the most well-known chlorinated organic compounds recently detected in aqueous environments. The presence of PCE in aquatic ecosystems has caused many health problems and environmental challenges. Therefore, its removal and treatment from aqueous environments are essential. Materials and Methods: The electro-Fenton (EF) process was carried out in...

متن کامل

Application of Electro-Fenton (EF) Process to the Removal of Pentachlorophenol from Aqueous Solutions

Pentachlorophenol (PCP) is a very hazardous compound which enters into the environment by industries such as refineries and petrochemicals. As its biological degradation is very slow, this use may cause the pollution of soils and groundwater; with the recent emergence of pentachlorophenol contamination as an important drinking water quality issue, finding an easy, economical, and useful method ...

متن کامل

Photocatalytic process using magnesium oxide nanoparticles for amoxicillin removal from aqueous solution

Background & Aim: Excessive consumption of antibiotics and their incomplete metabolization in human and animals, as well as inadequate removal by conventional waste water system leads to the release of these chemicals into the environment. Antibiotics have adverse effects including bacterial resistance, digestive disorders and genotoxic. Therefore the aim of this study was to survey amoxicillin...

متن کامل

Treatment of Aqueous Solution Containing Acid red 14 using an Electro Peroxone Process and a Box-Behnken Experimental Design

Background & Aims of the Study: Azo dyes utilized in industrial processes, such as the textile manufacturing, lead to the creation of huge amounts of colored wastewaters that contain non-organic and organic constituents. Therefore, it is necessary to search for remedies in this regard. This study investigated the degradation and mineralization of Acid red 14 (AR14), which is a mono Azo dye gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental sciences

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 2008